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Abstract- Many variants of Differential Evolution (DE) algorithms exist in literature to solve Engineering 
Design Problems. However, the performance of DE is highly affected by the inappropriate choice of its operators 
like mutation and crossover. Moreover, in general practice, DE does not employ any strategy of memorizing the 
so-far-best results obtained in the initial part of the previous cycle. In this paper a „Memory based DE (MBDE)‟ 
propose which having two „swarm operators‟. These operators are based on the personal and global best 
mechanism of particle swarm optimization (PSO). Proposed MBDE is validate on 13 typical benchmark 
functions. Further to test its efficacy five different model order reduction (MOR) problems for single-input and 
single-output system are solved by MBDE. The results of MBDE are compared with state-of-the-art algorithms 
that also solved those problems. Numerical, statistical and graphical analysis reveal the competency of the 
proposed algorithm. 

Index Terms- Differential Evolution, Mutation, Crossover, Engineering design problems. 

1. INTRODUCTION 

Nowadays, optimization problems are very 

important and frequently appear in the real world. 

Solving such problems is a challenging area of 

research in the science and engineering disciplines. In 

spite of many Evolutionary Algorithms (EAs), 

Differential Evolution (DE) [1] is an efficient, 

formidable and popular ingredient. The DE has many 

advantages like easy implementation, reasonably 

faster, robust and exhibits effective global search 

ability [2-8]. In general, it also has efficient global 

search ability and hence considered as global 

optimization algorithm [9]. Therefore, it has been 

applied to solve many engineering optimization 

problems such as mechanical engineering design 

problem [10], fuzzy clustering of image pixel [11], 

economic load dispatch [12], nuclear reactor core 

design [13] and many others [9]. However, most of the 

time, the solution gets stacked in some local optima. 

As a result, it leads to a premature convergence. It is 

because of DE have some individual shortcomings 

like sometimes the solution gets stacked in local 

optimum which leads to premature convergence [8, 

14, 15]. Also, same as other EAs, DE does not 

guarantee to reach at global optimal solution in a finite 

time interval [8]. Therefore, in order to improve the 

performance of basic DE, a number of attempts are 

made in the literature [2-23]. A detailed survey on the 

variants of DE can be found in [20, 21]. Moreover, in 

order to improve the robustness of DE, a number of 

mutation strategies of DE have been proposed in [9, 

16, 17, 19, 20, 21, 22]. Basically, DE is much 

sensitive to choice of the mutation strategy. Also, it is 

very difficult to recommend a fixed set of parameters 

for different problems [9, 16, 17, 19, 20, 21, 22]. On 

the other hand, inappropriate choice of mutation 

strategy may lead to premature convergence, 

stagnation or wastage of computational time [9]. 

 

 

 

Similarly, researchers mainly used two types of 

crossover schemes in DE namely binomial crossover 

and exponential crossover [1]. In [24], Price 

recommended the use of binomial crossover is better.  

 

But later, it is observed that there are no significant 

differences between these crossovers [25]. 

Unfortunately, according to „No Free Lunch 

Theorem [26])‟, no single optimization method exist 

which is able to solve consistently to all global 

optimization problems. In spite of quite a good 

number of DE variants exist in the literature; DE 

further yields improved results while hybridizing with 

Particle Swarm Optimization (PSO) [27]. Each of 

them is capable of dominating the shortcoming of the 

other to add the robustness in the resultant hybrid 

algorithm. The magical synergy of DE and PSO has 

been well established and has crossed many success 

milestones in recent past. Yet, many hybrid methods 

of DE and PSO have been proposed [28-46]. These 

approach moves around the enhancement of 

capabilities of DE and PSO in various aspects and 

successfully applied to wide range of optimization 

problems such as medical image processing problem 

[30], engineering design optimization [37, 38], well 

placement optimization [40], power systems 

optimization [41], digital FIR filter design [42] and 

many others. 

Though many variants of DE and its hybrid 

algorithms have been suggested in the literature to 

solve optimization problems, they are unable to 

provide satisfactory result. The reason behind this is 

DE has no mechanism to memorize the so-far best 

solution but it uses only the global information about 

the search space [36]. Therefore, in spite of the 

increased convergence rate of DE, the algorithm 

mostly loses its computing power and eventually leads 

to premature convergence as reported in [4, 9, 15]. 
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Inspired by above fact a memory based differential 

evolution proposed in this paper where two novel 

operators (swarm mutation and swarm crossover) were 

introduced under the PSO environment. The reminder 

of this paper is organized as follows. Section 2 

presents overview of the basic DE. Section 3 presents 

a detailed description of the proposed algorithm. The 

efficiency of the proposed algorithm is validated 

through unconstrained benchmark functions in Section 

4. The proposed algorithm is applied to solve MOR 

problems in Section 5. Section 6 draws the conclusion 

of the paper along with some highlights on future 

scopes. 

2. OVERVIEW OF BASIC DIFFERENTIAL 

EVOLUTION 

Differential Evolution (DE) is an Evolutionary 

Algorithm (EA) proposed by Storn and Price in 1995 

[1]. The outline of the classical DE may be given as 

follows.  

Initialization 

Initialize a population of NP target vectors (parents) 

    (             )           , is randomly 

generated within user-defined bounds, where D is the 

dimension of the optimization problem. 

Mutation 

Let   ( )      ( )    ( )      ( ) be the „   ‟ 

individuals at „   ‟ generation. A mutant vector 

  (   )   (   (   )    (   )      (   )) is 

generated as follows. 
 

  (   )          (    ( )      ( )) 
 

where,                     [   ] is the 

mutation factor.   

Crossover  

The target vector   ( ) and the mutant vector   (  
 ) create a new trial vector   (   )   ( (  
 )    (   )      (   )) as follows. 

 

   (   )

  {
  (   )            (   )              ( )

  ( )                   (   )              ( )
 

 

where           ( )   (       ),     [   ] is 

the crossover constant. 

Selection 

Selection operates by comparing the individual‟s 

fitness to generate the next generation population. 
 

   (   )

  {
  (   )         (  (   ))   (  ( ))

  ( )                                                   
 

 

The cyclic implementation of mutation, crossover and 

selection is continued till it meets with the pre-defined 

stopping criterion. 

3. PROPOSED METHOD  

Motivated by the advantages and disadvantages of 

DE, and above observations, in this present study 

„Memory Based Differential Evolution (MBDE)‟ 

proposed.  where the mutation and crossover are 

termed as „swarm mutation‟ and „swarm crossover‟ 

because of these operator based on       and       

mechanism of PSO [27]. The proposed operators are 

explained in the following section.  

3.1. Swarm mutation 

Let   ( )      ( )    ( )      ( ) is the target 

vector and   ( ) is the personal best position vector, in 

the current generation „ ‟. Then a mutant vector (i.e. 

perturbed vector)   ( )      ( )    ( )      ( ) is 

generated by „Swarm Mutation‟ as follows. 
 

  ( )  

   ( )   |
 (  

    ( ))

 (  
     ( ))

|  (  
    ( )    ( ))  

                 |
 (     ( ))

 (  
     ( ))

|  (     ( )    ( ))                            (1)  
  

where   
    ( ) is the personal and      ( ) is the 

global best position of the vector   ( ) respectively, 

 (  
    ( )) is the personal best  and  (     ( )) is 

the global best function value of the vector   ( ) 

respectively,  (  
     ( )) is the worst function value 

of vector   ( ), in the current generation „ ‟. 

Whenever  (  
     ( ))    it will be replaced by a 

large positive constant „ ‟, in order to impact a small 

perturbation to   ( ). Clearly, each of the ratio-

coefficient of the terms (  
    ( )    ( )) and 

(     ( )    ( )) generates a real constant factor 

between [   ]  that controls the amplification of the 

differential variation. 

3.2. Swarm crossover 

To generate a new trial vector   ( )  
    ( )    ( )      ( ), „Swarm Crossover‟ works 

as follows.  

   ( )  

{
 
 

 
   ( )      (   )  (     ( )    

    ( ))   

       (   )              ( )

  ( )      (   )  (     ( )    
    ( ))  

        (   )              ( )

          (2) 

 

where   ( ) is the mutant vector,   ( ) 
is the target 

vector,             ( )   (       ),      [   ] is 

the crossover constant. 

3.3. Steps of proposed algorithm 

Steps of the proposed MBDE presented below. 
 

Step 1: Randomly generate all vectors i.e.   ( )  
 (            ) in the prescribed search 

range  

Step 2: Evaluate   ( ); i. e. find the function values of  

  ( ) for i = 1, 2, …, NP 

Step 3: Set t = 0 
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Step 4: Construct a matrix   ( )    ( ),   
    ( )  

  ( ), go to step 6  
 

Step 5: Update  ( )     
    ( ) using   

 ( )   {
  ( )               (  ( ))   (  (   ))

  (   )                                         
 

Step 6: Find       ( )  
 

Step 7: Swarm Mutation using the Eq. (1) 

Step 8: Swarm Crossover using the Eq. (2)  

Step 9: Apply Elitism 

Step 10: Stop if the termination criterion is met, else 

set t = t + 1 and go to Step-5 
 

4. VALIDATION OF PROPOSED 

ALGORITHM   

In this section before solving the MOR problem, 

proposed MBDE applied to solve 13 unconstrained 

benchmark functions (reported in Table 1 and taken 

from [23]).  
 

   

Table 1 Benchmark Functions 
 

f Function Name Formulation S C fmin 

f1 Sphere   2

1

D

i

i

f x x




 

[-100, 100] US 0 

f2 Schwefel 2.22  
1 1

  
DD

i i

i i

f x x x
 

  

 

[-10,10] UN 0 

f3 Schwefel 1.2 2

1 1

( )
D i

i

i j

f x X
 

 
  

 
 

 
[-100, 100] UN 0 

f4 Schwefel2.21  ( ) max ,1i if x x i D  
 [-100, 100] UN 0 

f5 Step 2

1

( ) ( 0.5 )
D

i

i

f x x


   
 

[-100, 100] US 0 

f6 Quartic 
4

1

( ) random [0,1)
D

i

i

f x ix


 
 

[-1.28, 1.28] US 0 

f7 Rosenbrock    
21

2 2

1

1

(100( ) 1 )
D

i i i

i

f x x x x






   

 
[-30, 30] UN 0 

f8 Schwefel    
1

418.9829 sin
D

i i

i

f x D x x


  
 

[-500, 500] 

 

MS 

 
0 

f9 Rastrigin     2

1

10 10cos 2
D

i i

i

f x D x x


  
 

[-5.12, 5.12] MS 0 

f10 Ackley 
 

 
2

1 1

1 1
cos 2

5

20 20

D D

i i
i i

ix x
D D

f x e e e


 

      
   
   

 
     [-32, 32] MN 0 

f11 Griewank 
2

1 1

( ) cos 1
4000

DD
i i

i i

x x
f x

i 

 
   

 
 

 

[-600, 600] MN 0 

 

 

f12 

 

 

Penalized 

1
2 2 2 2

1 1

1 1

( ) 10sin ( ) ( 1) [1 10sin ( )] ( 1) ( ,10,100,4)
D D

i i D i

i i

f x y y y y u x
D


 





 

 
       

 
 

 

   ;    
1

where  1 ( 1) and 0               ;  
4

  ;     

m

i i

i i i i

m

i i

k(x - a)  x a

y x u(x ,a,k,m) - a x a

k(-x - a) x a

 


     


 

            
 

 

[-50, 50] 

 

 

MN 

 

 

0 

f13 

 

Penalized2 

 

1
2 2 2 2 2

1 1

1 1

( ) 0.1 sin ( ) ( 1) [1 sin (3 )] ( 1) [1 sin (2 )] ( ,5,100,4)
D D

i i D D i

i i

f x x x x x x u x  




 

 
        

 
 

   ;    
1

where  1 ( 1) and 0               ;  
4

  ;     

m

i i

i i i i

m

i i

k(x - a)  x a

y x u(x ,a,k,m) - a x a

k(-x - a) x a

 


     


 

 

 

 

[-50, 50] 

 

 

MN 

 

 

0 

 

S: domain of the variables, fmin: Global minima, C: Function characteristics, U: Unimodal, M: multimodal, S: separable, N: non-separable 

 

Table 2   Comparison of MBDE with others in [23] for 13 (10D) benchmark functions, in terms of mean and S. 

D. of the best objective function value  
 

 f Max. NFEs 
Algorithm 

 MBDE GDE DE/rand/1 DE/best/1 DE/target-to-best/1 

f1 100000 
1.429e-295 

(0.000e+00) 

4.821e-46 

(1.13e-45) 

1.382e-36 

(1.19e-36) 

1.602e-39 

(1.39e-39) 

2.954e-41 

(2.694e-41) 

f2 100000 
2.642e-293 

(0.000e+00) 

2.875e-21 

(4.99e-21) 

7.475e-19 

(3.58e-19) 

4.291e-20 

(3.63e-20) 

9.352e-21 

(3.646e-21) 

f3 100000 
4.623e-291 

(0.000e+00) 

1.338e-24 

(2.77e-24) 

1.168e-20 

(9.57e-21) 

1.84e-22 

(1.35e-22) 

4.685e-24 

(3.772e-24) 

f4 100000 
1.182e-296 

(0.000e+00) 

1.042e-14 

(2.91e-14) 

3.048e-13 

(2.35e-13) 

2.683e-14 

(2.80e-14) 

3.943e-15 

(1.695e-15) 

f5 100000 
0.000e+000 

(0.000e+00) 

1.325e-15 

(3.37e-15) 

2.325e-12 

(3.35e-12) 

2.278e-21 

(3.28e-21) 

5.986e-22 

(1.260e-22) 

f6 100000 
0.000e+00 

(0.00e+00) 

0.000e+00 

(0.00e+00) 

0.000e+00 

(0.00e+00) 

0.000e+00 

(0.00e+00) 
0.000e+00 

(0.00e+00) 

f7 100000 
1.037e-006 

(2.420e-08) 

1.329e-03 

(6.047e-4) 

1.78e-03 

(6.776e-4) 

2.011e-03 

(8.390e-4) 

1.694e-03 

(7.761e-04) 

f8 100000 
0.000e+000 

(0.000e+00) 

7.787e+02 

(1.871e+2) 

2.460e+02 

(3.611e+2) 

6.664e+02 

(3.734e+2) 

5.012e+02 

(1.347e+2) 

f9 100000 
0.000e+000 

(0.000e+00) 

5.597e+00 

(1.570e+0) 

1.882e+01 

(3.235e+0) 

6.467e+00 

(1.641e+0) 

2.192e+01 

(3.391e+0) 

f10 100000 
1.284e-015 

(0.000e+00) 

7.993e-15 

(2.90e-15) 

4.440e-15 

(0.000e+0) 

5.151e-15 

(1.49e-15) 

4.440e-15 

(0.000e+0) 
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f11 100000 
0.000e+000 

(0.000e+00) 

8.883e-02 

(4.691e-2) 

1.819e-02 

(9.154e-2) 

1.219e-02 

(1.021e-1) 

3.127e-02 

(8.615e-02) 

f12 100000 
1.511e-032 

(1.258e-48) 

4.7116e-32 

(1.15e-47) 

4.7116e-32 

(1.15e-37) 

1.711e-32 

(1.15e-47) 

4.711e-32 

(1.53e-47) 

f13 100000 
1.346e-032 

(2.042e-48) 

1.349e-32 

(2.884e-48) 

1.349e-32 

(2.884e-48) 

1.349e-32 

(2.884e-48) 

1.349e-32 

(2.884e-48) 

Table 3   Comparison of MBDE with others in [23] for 13 (30D) benchmark functions, in terms of mean and S. 

D. of the best objective function value 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

The 

simulations were conducted on Intel(R) Core-i3, 2.20 

GHz, 2GB RAM, computer in the C-Free Standard 4.0 

Environment. To execute the performance of MBDE, 

population size (NP) is taken as 10D and 30D (where 

D is the dimensions of the problems) and after fine-

tuned crossover rate are recommended as CR = 0.9 for 

further study.   

For each problem, 50 independent runs are 

performed and numerical results are reported in 

respective tables. The boldface values in each table 

represents the better value achieved by that 

corresponding algorithm and „Na‟ shows the non-

availability of the results. For a fair comparison the 

stopping criterion in this study remains the same as in 

GDE [23]. The results produced by MBDE on 13 

typical unconstrained benchmark functions have been  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compared with state-of-the-art algorithms. 

 
 

4.1. Numerical analysis   

The mean and standard deviation (S.D.) of the best 

objective function value for 50 runs is reported in 

Table 2 and Table 3 for 10D and 30D benchmark 

functions, respectively. The results produced by 

proposed algorithm are compared with DE/rand/1, 

DE/best/1, DE/target-to-best/1 and group based 

differential evolution (GDE) [23]. It is observed that 

from Table 2 and Table 3 that MBDE outperforms its 

competitors in all benchmark functions both for 10D 

and 30D. Only for f6, MBDE performs equally to 

others for 10D, but better than others in 30D except 

GDE. It is worth noting that in almost all cases MBDE 

impacts very less S. D.  

 

 
 

 

f Max. NFEs 
Algorithm 

MBDE GDE DE/rand/1 DE/best/1 DE/target-to-best/1 

f1 300000 
4.162e-290 

(0.000e+00) 

6.074e-24 

(8.53e-24) 

1.355e-03 

(5.304e-4) 

4.968e-04 

(3.323e-4) 

1.096e-04 

(4.7257e-05) 

f2 300000 
1.495e-292 

(0.000e+00) 

1.759e-07 

(4.185e-7) 

2.130e-01 

(7.311e-2) 

2.882e-02 

(7.528e-3) 

2.040e-02 

(8.340e-03) 

f3 300000 
4.528e-289 

(0.000e+00) 

1.764e-02 

(2.105e-2) 

1.314e+04 

(3.752e+2) 

4.742e+02 

(1.814e+2) 

2.692e+02 

(7.346e+1) 

f4 300000 
1.620e-291 

(0.000e+00) 

3.256e-01 

(2.675e-1) 

2.813e+00 

(3.646e+1) 

1.000e+00 

(3.224e-1) 

8.337e-01 

(1.919e-01) 

f5 300000 
0.000e+000 

(0.000e+00) 

5.217e+00 

(5.189e+0) 

2.722e+01 

(6.322e-1) 

3.348e+01 

(2.827e+1) 

2.856e+01 

(2.035e+1) 

f6 300000 
1.584e-012 

(6.519e-18) 
1.557e-23 

(2.65e-23) 

1.363e-03 

(3.836e-4) 

6.735e-04 

(3.156e-4) 

1.032e-04 

(3.624e-05) 

f7 300000 
2.402e-006 

(1.501e-08) 

1.899e-02 

(6.103e-3) 

2.483e-02 

(6.148e-3) 

2.759e-02 

(6.852e-3) 

2.029e-02 

(5.103e-03) 

f8 300000 
0.000e+000 

(0.000e+00) 

2.897e+03 

(8.860e+2) 

7.00e+03 

(2.866e+2) 

3.097e+03 

(7.15e+12) 

4.377e+03 

(1.338e+3) 

f9 300000 
0.000e+000 

(0.000e+00) 

4.745e+01 

(1.201e+1) 

1.964e+02 

(7.629e+1) 

1.106e+02 

(1.898e+1) 

2.019e+02 

(6.946e+0) 

f10 300000 
1.654e-015 

(1. 462e-16) 

2.129e-10 

(1.12e-10) 

1.796e-02 

(3.406e-3) 

8.160e-03 

(2.819e-3) 

3.603e-03 

(9.845e-04) 

f11 300000 
0.000e+000 

(0.000e+00) 

8.127e-03 

(9.785e-3) 

7.260e-03 

(2.931e-3) 

5.785e-03 

(5.361e-3) 

4.030e-03 

(3.991e-03) 

f12 300000 
1.674e-021 

(2.183e-30) 

6.133e-21 

(7.05e-22) 

5.678e-04 

(2.638e-4) 

1.191e-04 

(7.364e-5) 

3.317e-05 

(3.053e-05) 

f13 300000 
1.642e-023 

(1.038e-30) 

5.541e-23 

(9.19e-23) 

2.508e-03 

(9.607e-4) 

1.401e-03 

(3.463e-3) 

1.024e-04 

(7.882e-05) 
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Fig. 1(a).  Average NFEs of MBDE with others in [23] for 
13 (10D) benchmark Functions  

Fig. 1(b). Average NFEs of MBDE with others in [23] for 
13 (30D) benchmark Functions   

The average numbers of function evaluations (NFEs) 

for all the algorithms under consideration are 

compared in Fig. 1(a) and 1(b) for 10D and 30D, 

respectively. From these figure it can be concluded 

that MBDE uses fewer number of NFEs compared to 

rest algorithms.   

4.2. Convergence analysis 

The convergence speed of MBDE is compared 

with the other algorithms reported in [23] over a set of 

5 higher dimensional (30D) typical test functions 

(Sphere, Rosenbrock, Schwefel, Rastrigin and Ackley) 

are picked. The convergence graphs are presented in 

Fig. 2(a-e). Form these figures it can be concluded that 

in all the functions MBDE converge much faster than 

other algorithms. It can be concluded that, MBDE is 

greatly stable to minimize the unconstrained 

optimization problems. 

 

   
 

  
Fig. 2(a).  Convergence of MBDE with others in [23] 

for Sphere Function (30D) 

Fig. 2(b). Convergence of MBDE with others in [23] 

for Rosenbrock Function (30D) 

  
 

Fig. 2(c). Convergence of MBDE with others in [23] 
 

Fig. 2(d). Convergence of MBDE with others in [23] 
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for Schwefel Function (30D) 
 

for Rastrigin Function (30D) 

 
Fig. 2(e). Convergence of MBDE with others in [23] for Ackley Function (30D) 

4.3. Statistical analysis   

To compare the performance of multiple 

algorithms on the test suite, a well-known ranking 

based test namely Friedman test [47] is selected. In 

Table 4 the average ranking of MBDE, GDE, 

DE/rand/1, DE/best/1, DE/target-to-best/1 on 

unconstrained benchmark functions are presented. 
 

Table 4 Average rankings achieved by Friedman test 

 

Algorithms Ranking 

MBDE  5.18  

GDE 4.27 

DE/rand/1 2.26 

DE/best/1 3.05  

DE/target-to-best/1  3.57 
 

The performance of the compared algorithms can 

be sorted by average ranking into the following order: 

MBDE, GDE, DE/target-to-best/1, DE/best/1, 

DE/rand/1. The best average ranking was obtained by 

the proposed MBDE, which outperforms the other 

algorithms. 

5. APPLICATION OF PROPOSED 

ALGORITHM  

In this section proposed MBDE is applied to solve 

the model order reduction (MOR) problem. A brief 

description of the MOR problem is presented below.  

5.1. Problem statement  

Let‟s consider a n
th

 order linear time invariant 

dynamic single-input and single-output system (SISO) 

system given as follows. 

 ( )   
 ( )

 ( )
 

∑    
    

   

∑    
  

   
                                             (3) 

Where    and    are known constants. The 

problem is to find out     order reduced model in the 

transfer function form  ( ), where     represented 

by Eq. (4) such that the reduced model retains the 

important characteristics of the original system and 

approximates its step responses as closely as possible 

for the same type of inputs with minimum Integral 

square error (ISE) as well as Impulse response 

energy(IRE).  

  ( )   
  ( )

  ( )
 

∑   
      

   

∑   
    

   
                                        (4) 

where   
 and   

 are unknown constants. 

Mathematically, the ISE of step responses of the 

original and the reduced system can be expressed by 

the following error index given by Eq. 5).                    

   ∫ [ ( )    ( )]
   

 

 
                                      (5) 

where  ( ) is the unit step response of the original 

system and    ( ) is the unit step response of the 

reduced system. The error index is the function of 

unknown coefficients of reduced order model so that 

the error index is minimized. 

The IRE for the original and the various reduced 

models is given by as following Eq. (6).  

     ∫  ( )   
 

 
                                                 (6) 

where,  ( ) is the Impulse response of the system. In 

this paper the objective is to minimize the objective 

function based on both ISE and IRE.  

5.2. Procedure to reduced second order model 

for the given higher order system  

Let‟s consider the original high order system 

transfer function is given by Eq. (7). 

 ( )   
          

            

          
            

                           (7)                           

where   is the order of the system and    . 

 ( )   
   

       
            

(    )(    )(    ) (    )
                             (8) 

where                        are 

distinct real Eigen values of the system. The unit step 

responses of (8) can be determined as follows.  

 ( )   
 ( )

 
  

  

 
 

  

    
 

  

    
   

    

      
 

  

    
 

(9) 

where   
   are real constants. Taking inverse Laplace 

transformation of Eq. (9), 

 ( )        
        

                  

10) 
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where   is steady state response and the rest of the 

terms are transient response of the system given in 

equation (8). Let the proposed reduced order system 

constructed is of 2
nd

 order, where 

   ( )   
      

   
        

 
      

(    )(    )
                       (11) 

where    and    are distinct and real Eigen values and 

       . 

The unit step response of (10) can be determined 

as follows. 

  ( )   
 ( )

 
  

  
 

 
 

  
 

    
 

  
 

    
                           (12) 

where   
    

    
             are real constants. Let the 

inverse Laplace transformation of Eq. (12) is as 

follows.  

  ( )    
    

         
                                 (13) 

In order that steady state part of the responses of 

the original high order system (8) and the reduced 

order system (11) are matched exactly, the following 

condition should be fulfilled. 

      
                                                                   (14)

 
The ISE of the transient responses of the system of 

(8) and (11) is given as follows. 

   ∫ [( ( )    )  (  ( )    
 )]   

 

 
  

   = ∫ [ ( )    ( )]
   

 

 
 since       

   

     ∫ {∑    
     

    ∑   
       

   }
 
  

 

 
            (15) 

where   
   and   

   are known and   
    

        are all 

unknown constants, which are randomly generated in 

MBDE and the value of    are calculated. The reduced 

model  ( ) is obtained over 30 independent runs so 

that the integral square error   is minimized. In the 

next step that reduced model  ( ) is taken where IRE 

given by Eq. (6) is also minimized. 

5.3. Simulations results and discussion  

In order to assess the efficiency of the proposed 

MBDE, it has been applied on five numerical 

examples of MOR problems. These numerical 

examples are reported in Table 5, having real and 

distinct Eigen values. Proposed MBDE aims at solving 

these numerical examples with two objectives. They 

are (i) to minimize the Integral Square Error (ISE) and 

(ii) Impulse Response Energy (IRE); between original 

higher order system and reduced lower order system.  

The result produced by MBDE for considered five 

test system is compared with FBDE [18], LICLDE 

[48] and ABC [49]. For the fair comparison, the 

population  

size, independent runs and stopping criterion are same 

as LICLDE [48]. Remaining parameters of MBDE are 

same as section 4. The best reported ISE and IRE are 

boldfaced in the respective tables. The original and the 

reduced systems for numerical examples 1, 2, 3, 4 and 

5 are presented in Tables 6, 7, 8, 9 and 10, 

respectively. 

 

Table 5 List of 5 numerical example of Model Order Reduction (MOR) problem 
 

Numerical 

example 

Original 

Source 
Transfer function of original model 

1.  Fourth-order 

system 
Lucas [50] 

1

3 28169.13 50664.97 9984.32 500

4 3 2100 10520 52101 10105 500
( )

s s s

s s s s
G s

  

   
  

2.  Fourth-order 

system 
Pal [51] 2

4

4 3 219 113 245 150
( )

s

s s s s
G s



   
  

3.  Fourth-order 

system  
Aguirre [52] 

3

3 24.269 +5.10 +3.9672 +0.9567

4 3 24.3992 +9.0635 +8.021 +5.362 +1
( )

s s s

s s s s
G s 

 

4.  Eighth-order 

system  
Shamash [53]  

4

7 6 5 4 3 218 514 5982 36380 122664 222088 185760 40320

8 7 6 5 4 3 236 546 4536 22449 67284 118124 109584 40320
( )

s s s s s s s

s s s s s s s s
G s

      

       


 

5.  Ninth-order 

system    

Eydgahi et al. 

[54] 5

4 3 235 291 1093 1700

9 8 7 6 5 4 3 29 66 294 1029 2541 4684 5856 4620 1700
( )

s s s s

s s s s s s s s s
G s

   

        


 
 

Table 6 Comparison of proposed method with existing methods for numerical example 1 
 

Method of reduction Reduced Models 1( )R s
 
 ISE IRE 

Original 1( )G s  ------------ 34.069 

MBDE 
2

72.523558 252.508258

89.582564 252.508258

s

s s



   

. 0.00125892 34.068896 

FBDE [18] 
2

85.33529245 462.3004006

113.6582937 462.3004006

s

s s



 
 0.0017826566 

 

34.06884 
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LICLDE [48] 
 

2

101.3218182 867.893179

169.4059231 867.893179

s

s s



 
 0.0036228741 34.069918 

ABC [49] 
2

485 +50000

+4187 +50000

s

s s
 

0.011624954  34.065841  

Table 7 Comparison of proposed method with existing methods for numerical example 2 
 

Method of reduction Reduced Models 2 ( )R s  ISE IRE 

Original 2 ( )G s    ---------- 0.00026938 

MBDE 
2

-0.0045958 0.08260527

4.021015 3.0988975

s

s s



 
 4.001259e-006 0.0002699 

LICLDE [48] 
2

0.0195 0.2884

14.9813 10.82

s

s s

 

 
 4.3168e-006 0.00027 

ABC [49] 
2

0.0318 +4.0074

+13.7409 +150.2775

s

s s
 

0.0005  0.0039  

 

Table 8 Comparison of proposed method with existing methods for numerical example 3 

  

Method of reduction Reduced Models 
3( )R s  ISE IRE 

Original 3 ( )G s    ----------- 0.54536  

MBDE 
2

0.75984 2.94328

3.15286 3.079858

s

s s



 
 0.21501e-01 0.545388 

LICLDE [48] 
2

0.7853 +2.949

+3.1515 +3.0823

s

s s
 0.338 e−01 0.54538  

ABC [49] 
2

0.2034 +8.994

+7.9249 +9.4008

s

s s
 

0.03501  0.54552 

 

Table 9 Comparison of proposed method with existing methods for numerical example 4 
  

Method of reduction Reduced Models 4 ( )R s  ISE IRE 

Original 4 ( )G s  ---------- 21.740 

MBDE 
2

14.886587 4.78524

5.98827 4.78524

s

s s



 
 0.08e-03 21.74 

FBDE [18] 
2

17.32178 5.3660

7.0240 5.3660

s

s s



   

0.80e-03 21.74 

LICLDE [48] 
2

17.203 5.3633

6.9298 5.3633

s

s s



 
 0.80e-03 21.74 

ABC [49] 
2

17.387 +5.3743

+7.091 +5.3743

s

s s
 

0.00085  21.696 

 

Table 10 Comparison of proposed method with existing methods for numerical example 5 
  

Method of reduction Reduced Models 5 ( )R s  ISE IRE 

Original 5 ( )G s    ---------- 0.47021  

MBDE 
2

0.598856818 0.9965860

1.49989469 0.9965860

s

s s 

 

 

 0.20595e-01 0.471842 

LICLDE [48] 
2

-0.6372 +1.0885

+1.5839 +1.0885

s

s s
 0.209e−01  0.4718 
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Fig. 3(a). Comparison of step response for numerical 

example 1   

 

Fig. 3(b). Comparison of impulse response for 

numerical example 1  

  

Fig. 4(a).  Comparison of step responses for 

numerical example 2  

Fig. 4(b). Comparison of impulse responses for 

numerical example 2 

  
Fig. 5(a).  Comparison of step responses for 

numerical example 3 

Fig. 5(b).  Comparison of impulse responses for 

numerical example 3  
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Fig. 6(a). Comparison of step responses for numerical 

example 4  

Fig. 6(b). Comparison of impulse responses for 

numerical example 4 
 

  

Fig. 7(a). Comparison of step responses for numerical 

example 5  

Fig. 7(b). Comparison of impulse responses for 

numerical example 5  

The unit step responses of the original, the reduced 

systems using MBDE and best reported method in [18, 

48, 49] are shown in Figs. 3(a), 4(a), 5(a), 6(a) and 

7(a), respectively for corresponding numerical 

examples. Also the impulse responses of the original, 

the reduced systems using MBDE and best reported 

method in [18, 48, 49] are shown in Figs. 3(b), 4(b), 

5(b), 6(b) and 7(b), respectively for corresponding 

numerical examples. It can be observed that for 

numerical examples 1, 2, 3 and 5, ISEs obtained by 

MBDE are significantly less than that of other 

methods. However, the ISE for numerical example 4 

obtained by MBDE significantly equal to LICLDE 

and FBDE but significantly less than of other 

methods. 

Also for all numerical examples, IREs of the 

reduced models obtained by MBDE are closest to that 

of the originals. Moreover, the step response (Figs. 

3(a), 4(a), 5(a), 6(a) and 7(a)) as well as impulse 

response curve (Figs. 3(b), 4(b), 5(b), 6(b) and 7(b)) 

seem to be closely lying on the original curve. It may 

also be seen that the steady state responses of the 

original and the reduced order models by MBDE are 

exactly matching while the transient response 

matching is also very close as compared to other 

methods. Thus these numerical examples establish the 

superiority of MBDE over other methods. Finally, 

MBDE performance is superior to state-of-the-art 

algorithms. Thus, MBDE may be treated as a robust 

method to solve MOR problem. 

6. CONCLUSION AND FUTURE WORKS 

In this paper a „Memory Based Differential 

Evolution (MBDE)‟ is proposed for solving model 

order reduction problems. It employs two new 

operators (swarm mutation and swarm crossover) 

based on PSO environment. The performance of 

MBDE has been compared with state-of-the-art 

variants of DE and other recent algorithms. 

The experimental and graphical comparisons 

conclude the  proposed MBDE (i) have few 

parameters to fine tune, it is easy to use for solving 

optimization problems, (ii) have better solution 

quality, rate of convergence, efficiency and efficacy as 

compared to its competitors, (iii) have well balanced 

diversity (iv) probably avoids the stagnation and helps 

to get rid of stacking in local minima and (v) with 
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respect to minimize the considered engineering 

optimization problem, achieves a marginal 

improvement over others. 

As a future works, MBDE can be applied in large 

real world problem and engineering and for solving 

multi-objective optimization problems. 

REFERENCES 

[1] R. Storn and K. Price, “Differential evolution –

a simple and efficient adaptive scheme for 

global optimization over continuous spaces”, 

Journal of Global Optimization, vol. 11, no. 4, 

pp. 341–359, 1997. 

[2] H.Y. Fan and J. Lampinen, “A trigonometric 

mutation operation to differential evolution”, 

Journal of Global Optimization, vol. 27, no.1, 

pp. 105–129, 2003.  

[3] O. Hrstka and A. Kucerova, “Improvement of 

real coded genetic algorithm based on 

differential operators preventing premature 

convergence”, Advances in Engineering 

Software, vol. 35, no. 3-4, pp. 237–246, 2004.  

[4] S. Das, A. Konar and U.K. Chakraborty, “Two 

improved differential evolution schemes for 

faster global search”, In: Proceedings of the 

2005 Conference on Genetic and Evolutionary 

Computation, pp. 991–998, 2005. 

[5] J. Liang, A. Qin, P. Suganthan and S. Baskar, 

“Comprehensive learning particle swarm 

optimizer for global optimization of 

multimodal functions”, IEEE Transactions on 

Evolutionary Computation, vol. 10, no. 3, pp. 

281–295, 2006. 

[6] F. Z. Huang, L. Wang and Q. He, “An effective 

co-evolutionary differential evolution for 

constrained optimization”, Applied 

Mathematics and Computation, vol. 186, no. 1, 

pp. 340–356, 2007. 

[7] S. Rahnamayan, H. R. Tizhoosh and M. M. A. 

Salama, “Opposition-Based Differential 

Evolution”, IEEE Transactions on Evolutionary 

Computation, vol. 12, no. 1, pp. 64–79, 2008. 

[8] S. Das, A. Abraham, U. K. Chakraborty and A. 

Konar, “Differential evolution using a 

neighborhood-based mutation operator”, IEEE 

Transactions on Evolutionary Computation, 

vol.13, no. 3, pp. 526–553, 2009. 

[9] K. V. Price, R. M. Storn and J. A. Lampinen, 

“Differential Evolution: A Practical Approach 

to Global Optimization”, Berlin: Springer, 

2005. 

[10] M. Zhang, W. Luo and X. Wang, “Differential 

evolution with dynamic stochastic selection for 

constrained optimization”, Information 

Sciences, vol. 178, no. 15, pp. 3043–3074, 

2008.   

[11] S. Das and S. Sil, “Kernel-induced fuzzy 

clustering of image pixels with an improved 

differential evolution algorithm”, Information 

Sciences, vol. 180, no. 8, pp. 1237–1256, 2010.  

[12] Y. Wang, B. Li and T. Weise, “Estimation of 

distribution and differential evolution 

cooperation for large scale economic load 

dispatch optimization of power systems”, 

Information Sciences, vol. 180, no. 12, pp. 

2405–2420, 2010.  

[13] W.F. Sacco and N. Henderson, “Differential 

evolution with topographical mutation applied 

to nuclear reactor core design”, Progress in 

Nuclear Energy, vol. 70, pp. 140–148, 2014. 

[14] N. Noman and H. Iba, “Accelerating 

differential evolution using an adaptive local 

search”, IEEE Transactions on Evolutionary 

Computation, vol. 12, no. 1, pp. 107–125, 

2008. 

[15] J. Lampinen and I. Zelinka, “On stagnation of 

the differential evolution algorithm”, In: 

Proceedings of MENDEL 2000, 6th 

International Mendel Conference on Soft 

Computing, pp. 76–83, 2000.  

[16] E. Mininno and F. Neri, “A memetic 

differential evolution approach in noisy 

optimization”, Memetic Computing, vol. 2, no. 

2, pp. 111–135, 2010.  

[17] R. Mallipeddi, P. Suganthan, Q. Pan and M. 

Tasgetiren, “Differential evolution algorithm 

with ensemble of parameters and mutation 

strategies”, Applied Soft Computing, vol. 11, 

no. 2, pp. 1679–1696, 2011.  

[18] H. Sharma, J. Bansal and K. Arya, “Fitness 

based differential evolution”, Memetic 

Computing, vol. 4, no. 4, pp. 1–14, 2012. 

[19] W. Gong and Z. Cai, “Differential evolution 

with ranking based mutation operators”, IEEE 

transaction on Systems Man and Cybernetics 

Part B- Cybernetics, vol. 43, no. 6, pp. 2066–

2081, 2013. 

[20] F. Neri and V. Tirronen, “Recent advances in 

differential evolution: a survey and 

experimental analysis”, Artificial Intelligence 

Review, vol. 33, no. 1-2, pp. 61–106, 2010.  

[21] S. Das and P.N. Suganthan, “Differential 

evolution: a survey of the state-of-the-art”, 

IEEE Transactions on Evolutionary 

Computation, vol. 15, no. 1, pp. 4–31, 2011.  

[22] Qin, V. Huang and P. Suganthan, “Differential 

evolution algorithm with strategy adaptation 

for global numerical optimization”, IEEE 

Transactions on Evolutionary Computation, 

vol. 13, no. 2, pp. 398–417, 2009.  

[23] M. F. Han, S. H. Liao, J. Y. Chang and C. T. 

Lin, “Dynamic group-based differential 

evolution using a self-adaptive strategy for 

global optimization problems”, Applied 

Intelligence, vol. 39, no. 1, pp. 41-56, 2013.  

[24] K. V. Price, “An Introduction to Differential 

Evolution”, In David Corne, Marco Dorigo, 



International Journal of Research in Advent Technology, Vol.6, No.5, June 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

851 

 

and Fred Glover, editors, New Ideas in 

Optimization, McGraw-Hill, London, pp. 79–

108, 1999.  

[25] K. Price and R. Storn, 

“http://www.icsi.berkeley.edu/~storn/code.html

”, website as in August 2008. 

[26] D. H. Wolpert and W. G. Macready, “No Free 

Lunch Theorems for Optimization”, IEEE 

Transactions on Evolutionary Computation, 

vol. 1, no. 1, pp. 67-82, 1997. 

[27] J. Kennedy and R. C. Eberhart, “Particle 

Swarm Optimization”, In: Proceeding of IEEE 

International Conference on Neural Networks, 

pp.1942–1948, 1995. 

[28] T. Hendtlass, “A combined swarm differential 

evolution algorithm for optimization 

problems”, Lecture Notes Computer Science, 

Springer Verlag, vol. 2070, pp. 11-18, 2001.  

[29] W. J. Zhang and X. F. Xie, “DEPSO: Hybrid 

particle swarm with differential evolution 

operator”, in: proceedings IEEE International 

Conference Systems Man Cybernetics, vol. 4, 

pp. 3816-3821, 2003.  

[30] H. Talbi and M. Batouche, “Hybrid particle 

swarm with differential evolution for 

multimodal image registration”, in: 

proceedings of the IEEE International 

Conference on Industrial Technology, vol. 3, 

pp. 1567–1573, 2004. 

[31] S. Das, A. Konar and U. K. Chakraborty, 

“Improving particle swarm optimization with 

differentially perturbed velocity”, in: 

proceedings Genetic Evolutionary Computation 

Conference, pp. 177-184, 2005.  

[32] P. W. Moore and G. K. Venayagamoorthy, 

“Evolving digital circuit using hybrid particle 

swarm optimization and differential evolution”, 

International Journal of Neural Systems, vol. 

16, no. 3, pp. 163-177, 2006. 

[33] Z. F. Hao, G. H. Guo and H. Huang, “A 

particle swarm optimization algorithm with 

differential evolution”, in: proceedings sixth 

International Conference Machine Learning 

and Cybernetics Hong Kong China, pp. 1031-

1035, 2007. 

[34] S. Das, A. Abraham and A. Konar, “Particle 

swarm optimization and differential evolution 

algorithms: technical analysis, applications and 

hybridization perspectives”, Advances of 

Computational Intelligence in Industrial 

Systems, Studies in Computational 

Intelligence, Springer Verlag, Germany, pp. 1–

38, 2008. 

[35] C. Zhang, J. Ning, S. Lu, D. Ouyang and T. 

Ding, “A novel hybrid differential evolution 

and particle swarm optimization algorithm for 

unconstrained optimization”, Operations 

Research Letters, vol. 37, no. 2, pp. 117–122, 

2009.  

[36] X. Wang, Q. Yang and Y. Zhao, “Research on 

hybrid PSODE with triple populations based on 

multiple differential evolutionary models”, in: 

proceedings International Conference Electrical 

Control Engineering Wuhan China, pp. 1692-

1696, 2010. 

[37] H. Liu, Z. X. Cai, and Y. Wang, “Hybridizing 

particle swarm optimization with differential 

evolution for constrained numerical and 

engineering optimization”, Applied Soft 

Computing, vol. 10, no. 2, pp. 629-640, 2010. 

[38] A. E. Dor, M. Clerc and P. Siarry, 

“Hybridization of Differential Evolution and 

Particle Swarm Optimization in a new 

algorithm DEPSO-2S”, Swarm and 

Evolutionary Computation, vol. 7269, pp. 57-

65, 2012. 

[39] B. Xin, J. Chen, J. Zhang, H. Fang and Z. Peng, 

“Hybridizing differential evolution and particle 

swarm optimization to design powerful 

optimizers: a review and tax-onomy”, IEEE 

Transactions on Systems Man and Cybernetics 

Part C: Applications and Reviews, vol. 42, no. 

5, pp. 744–767, 2012.  

[40] E. Nwankwor, A. Nagar and D. Reid, “Hybrid 

differential evolution and particle swarm 

optimization for optimal well placement”, 

Computational Geosciences, vol. 17, no. 2, pp. 

249-268, 2013. 

[41] S. Sayah and A. Hamouda, “A hybrid 

differential evolution algorithm based on 

particle swarm optimization for nonconvex 

economic dispatch problems”, Applied Soft 

Computing, vol. 13, no. 4, pp. 1608–1619, 

2013. 

[42] Vasundhara, D. Mandal, R. Kar and S. P. 

Ghoshal, “Digital FIR filter design using 

fitness based hybrid adaptive differential 

evolution with particle swarm optimization”, 

Natural Computing, vol. 13, no. 1, pp. 55-64, 

2014. 

[43] K. N. Das and R. P. Parouha, “An ideal tri-

population approach for unconstrained 

optimization and applications”, Applied 

Mathematics and Computation, vol. 256, pp. 

666-701, 2015. 

[44] R. P. Parouha and K. N. Das, “Parallel 

hybridization of Differential Evolution and 

Particle Swarm Optimization for constrained 

optimization with its application”, International 

Journal of Systems Assurance Engineering and 

Management, vol. 7, no. 1, pp. 143–162, 2016. 

[45] K. N. Das and R. P.Parouha, “Optimization 

with a novel hybrid algorithm and 

applications”, OPSEARCH, vol. 53, no. 3, pp. 

443–473, 2016.  

[46] K. N. Das, R. P. Parouha and K. Deep, “Design 

and applications of a new DE-PSO-DE 

algorithm for unconstrained optimization 

http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://www.worldscientific.com/worldscinet/ijns
http://www.sciencedirect.com/science/journal/01676377
http://www.sciencedirect.com/science/journal/01676377
http://link.springer.com/book/10.1007/978-3-642-29353-5
http://link.springer.com/book/10.1007/978-3-642-29353-5


International Journal of Research in Advent Technology, Vol.6, No.5, June 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

852 

 

problems”, International Journal of Swarm 

Intelligence, vol. 3, no. 1, pp. 23-57, 2017. 

[47] S. Garcia, A, Fernandez, J, Luengo and F. 

Herrera, “Advanced nonparametric tests for 

multiple comparisons in the design of 

experiments in computational intelligence and 

data mining: experimental analysis of power”, 

Information Sciences, vol. 180, no. 10, pp. 

2044–2064, 2010.   

[48] J. C. Bansal and H. Sharma, “Cognitive 

learning in differential evolution and its 

application to model order reduction problem 

for single-input single-output systems”, 

Memetic Computing., vol. 4, no. 3, pp. 209-

229, 2012.  

[49] J. C. Bansal, H. Sharma and K. V. Arya, 

“Model Order Reduction of Single Input Single 

Output Systems Using Artificial Bee Colony 

Optimization Algorithm”, Nature Inspired 

Cooperative Strategies for Optimization 

(NICSO 2011) Studies in Computational 

Intelligence,  vol. 387, pp.  85-100, 2011. 

[50] T. Lucas, “Continued-fraction expansion about 

two or more points: a flexible approach to 

linear system reduction”, Journal of the 

Franklin Institute, vol. 321, no. 1, pp. 49–60, 

1986.   

[51] J. Pal, “An algorithmic method for the 

simplification of linear dynamic scalar 

systems”, International Journal of Control, vol. 

43, no. 1, pp. 257–269, 1986. 

[52] L. Aguirre, “The least squares padé method for 

model reduction”, International Journal of 

Systems Science, vol. 23, no. 10, pp. 1559–

1570, 1992.  

[53] Y. Shamash, “Linear system reduction using 

pade approximation to allow retention of 

dominant modes”, International Journal of 

Control, vol. 21, no. 2, pp. 257–272, 1975. 

[54] A. Eydgahi, E. Shore, P. Anne, J. Habibi and 

B. Moshiri, “A matlab toolbox for teaching 

model order reduction techniques”, In: 

International conference on engineering 

education, Valencia, Spain, pp. 1–7, 2003. 

 

 
 

 

http://link.springer.com/book/10.1007/978-3-642-24094-2
http://link.springer.com/book/10.1007/978-3-642-24094-2
http://link.springer.com/book/10.1007/978-3-642-24094-2
http://link.springer.com/bookseries/7092
http://link.springer.com/bookseries/7092

